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We represent a melting of ultra-thin lubricant film at friction between
atomically flat surfaces as a result of action of spontaneously appearing elastic
field of stress shear component that is caused by the external supercritical
heating. The kinetics of this solid-liquid transition is described by the
Maxwell-type and Voigt-Kelvin equations for viscoelastic matter as well as by
relaxation equation for temperature. We show that these equations coincide
formally with the synergetic Lorenz system, where the stress acts as the order
parameter, the conjugate field is reduced to the elastic shear strain, and the
temperature is as the control parameter. Using the adiabatic approximation we
find the steady-state values of these quantities. Taking into account the
deformational defect of the shear modulus we show that lubricant melting is
realized according to mechanism of the first-order transition. The critical
temperature of friction surfaces increases with growth of the characteristic
value of shear viscosity and decreases with growth of the shear modulus value
linearly.

Key words: friction, elastic shear stress and strain, Lorenz system, shear
viscosity and modulus.

The interest to the problem of sliding friction is caused by its applied engineering
importance [1]. One of the main goals of studies in this field is to define the conditions
for low friction. At this direction the experiments were carried out with atomically flat
mica surfaces separated by ultra-thin layer of liquid lubricant that manifested a solid-type
behaviour at defined experimental conditions. Particularly, the stick-slip (or interrupted)
motion has been observed at critical yield stress inherent in solid friction [2]. This effect
occurs when lubricant film consists of several molecular layers and is explained as a
confinement-induced freezing. The consequent melting takes place when shear stress is
above some critical value due to "shear-induced melting" effect. Based on numerical
methods work [3] maintains that liquid molecular ordering is realized owing to walls
confinement. Studies stated in [4] - [6] were initiated for quantitative description of
experimental results, in particular, in Ref. [6] the lubricant behaviour was described
using the order parameter determining the melting degree. On the basis of viscoelastic
matter approximation and Ginzburg-Landau equation, where order parameter defines the
shear melting and freezing, the observed phenomenology of ultra-thin fluid film in the
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process of friction is successfully described in [7]. Here the phase diagram is calculated
defining the domains of sliding, stick-slip, and dry friction in the plane temperature —
film thickness.

The starting point of our approach is the synergetic concept of phase transition [8,9]
that is the generalization of phenomenological Landau theory. According to the latter,
phase transition is controlled by an order parameter, over which value ¢ a free energy F
is developed in a power expansion [10]. The equilibrium value of ¢ is determined by the
condition

OF /0¢ = h, (1)
where # is the external field and F is the free energy at & = 0. The relaxation process of
transition to equilibrium is described by equation [11]

: 1(oF
)

Here n is the kinetic coefficient, which can be considered as the generalized viscosity. If
¢ is close to its equilibrium value ¢, = O we can use the linear approximation

OF /0d = &/y, where y =0¢/0h = (62F / 64)2)71 is the susceptibility. As a result, the
relaxation equation (2) takes the linear form
=~ +xh, 3)
where
T=%N 4)
is the relaxation time.

The Egs. (3), (4) were used by Landau and Khalatnikov to study the anomalous
ultrasound absorption in the vicinity of phase transition. They held the fact that here
susceptibility y — oo and supposed that viscosity m is practically independent on
temperature 7. In their theory the anomalous large magnitude of t is responsible to
freezing process.

For viscoelastic matter the shear modulus G plays a role of the inverse susceptibility
and expression (4) assumes the form

1=n/G. 5)
In the cases of viscoelastic and displacement-type phase transitions (for example, of
martensite-type) the modulus G goes to zero in the vicinity of transition point and
relaxation time (5) diverges [12, 13]. There are works, see for example [14], using the
fact that generalized susceptibility is practically independent on temperature but viscosity
strongly increases with temperature at glass transition. Let us note that anomalous large
value of equilibrium coefficient (susceptibility) is typical for phase transition and
anomalous large value of kinetic coefficient is inherent in glass transition.

We are aiming to take into account, along the line [7], that the solid-liquid transition
of ultra-thin lubricant film occurs due to both thermodynamic and shear melting. We
obtain the unified analytical description of these processes as a result of the self-
organization caused by the positive feedback of shear stress and temperature on shear
strain - on the one hand, as well as the negative feedback of shear stress and strain on
temperature - on the other one. Our approach is based on the assumption that relaxation
time T — oo because the shear viscosity diverges at the point of transition. The feature of
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using the synergetic approach is that it allows us to obtain the synergetic potential, which
is analog of free energy, from some simple equations.

The main supposition of our approach is that relaxation equation of the shear
component ¢ of elastic stress tensor has the form similar to the Landau-Khalatnikov
equation (3):

1,6 =—0 + Ge. (6)

Here ¢ is the corresponding component of strain, the first term on the right-hand side

describes the Debye relaxation during time t, =m,/G determined by values of

effective viscosity m, and shear modulus G. In the stationary case ¢ =0 the kinetic
equation (6) is transformed into the Hooke law

c = Ge. (7)

Relaxation behavior of viscoelastic matter is described also by the Voigt-Kelvin
equation [15]

e=-¢g/1,+0/n, 8)
where 1, is the relaxation time of matter strain and n is the shear viscosity coefficient.

The second term on the right-hand side describes the flow of a viscous liquid caused by
the shear components of the elastic stress. In the stationary case € =0 we obtain Hooke
type expression ¢ = G,¢ . It is worth to note that effective values of viscosity n, =1,G
and modulus G, =mn/t, do not coincide with the real values n and G. The formal
reason for this difference is that the Maxwell-type equation (6) does not reduce to the
Voigt-Kelvin equation (8) [16]. It is very important for our consideration that the values
G,, G, n, depend on temperature T very weak, while the real viscosity n diverges, if the
temperature decreases to point 7, [14]. Further we will use the simplest approximate
temperature dependencies GS(T ), G(T ), nG(T ) = const,

—_ Mo )
" T/T. -1

where 1, = n(T = 2Tc) is the typical value of viscosity.

According to synergetic ideology [8, 9] for completing of the equations system (6),
(8), that contain the order parameter o, the conjugate field €, and the control parameter 7,
it is necessary to add a kinetic equation for the temperature. This equation can be
obtained using the basic equations of elasticity theory stated in [16]. Thus, we should
start from the equation connecting the time derivatives of entropy S and internal energy
U with equilibrium stress o
T as _du _ o s (10)
de dt dt
(in equilibrium the heat variation is dQ = 7dS). In non-equilibrium case of non-uniform
medium heating this equation has the form

—divq:d—t—c—. (11)

Here the heat current is given by the Onsager equation
q=—-«xVT, (12)
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where « is the heat conductivity constant, and the total stress 6 =c, +c' includes the

viscous part ¢'. Deducting Eq. (11) from Eq. (10), taking into account the equality
dS_2S(oU) dr oS U ds (a5 de_pe, dT 12U de o, de
dt oU\oT ), dt oU oe dt \oe),d T dt T dedt T dt’

and supposing that a layer of lubricant and atomically flat mica surfaces have different
temperatures 7 and 7, respectively, we obtain

LK ) Jdoy .
T==(T,-T)+c'e+T—2¢. (13)
pe = (1, -7} o' + 72
Here the equalities (x//)(7, ~T)~—divq and dU/ée =c, —Tdc,/dT are used, [ is

the scale of heat conductivity, p is the mass density, ¢, is the specific heat capacity. The
first term on the right-hand side of Eq. (13) describes the heat transfer from the layer of
lubricant to friction surfaces. The second term takes into account the effect of the
dissipative heating of a viscous liquid flowing under the action of the stress [17]. The
third term represents the heat source that is conditioned by the reversible mechanic-and-
caloric effect for which in linear approximation T(dc,/0T)é =~ c,é . As a result, the

equation of heat conductivity can be written in the form
pe,T :;(Te ~T)+ok. (14)

It is convenient to introduce the following measure units
Oy :(pcvnOTc/TT)l/Za € :1, Tc (15)
for variables o, €, T, respectively (T, = ple, / « is the time of heat conductivity). Then,

substituting in (14) the expression for the &€ from Eq. (8), the basic equations (6), (8),
(14) take the form:

r,6=-0+(g/0)s, (16)
1,6 =-e+06(T-1)o, 7
: 2 (18)
TTTI(TE—T)—O'S/(9+O' ,
where we introduce the constants
G 1/2 T 1/2
g=—, Gy=, ¢ =“_SE(T_S] (—pcv TJ . (19)
G € G Tr Mo

It is easy to see that the equations (16) - (18) have the form similar to the Lorenz system
[8, 9]

For the qualitative analysis of this system let us use the adiabatic approximation,
when the characteristic time scales are submitted to the following inequalities:

T, << Tg, Tp << Tge (20)

They mean that in the course of medium evolution the strain &(¢) and the temperature 7()

follow the change of the stress o(f). The first of these conditions compares the

macroscopic time t_, and microscopic Debye time t, ~107'2 s, so that is satisfied

always. Using the definitions of the thermometric conductivity y=k/c,, the effective

1/2

kinematic viscosity v, =mn,/p, and the sound velocity ¢ =(G/p)''?, it is conveniently

to give to the second condition (20) the form



22 A. Khomenko, O. Yushchenko

I<< L, 1)
according to that the characteristic length of heat conductivity has not to exceed the value
XV
L==%.
pc? (22)

Then, we can set the left-hand sides of Egs. (17), (18) to be equal to zero. As a result, the
dependencies of the strain € and the temperature 7 on the stress c read:

_ (e}
e=o-(-1) 2, o
2
T=T,+(2-7,)——. (24)
l+o

According to Eq. (23) at 7, < 1 the € vs o dependence acquires a minimum at 6 =c, ,
defined by equality

o5 = %[(Te )T, -2, -10)] (25)

and then increases monotonically'. When 7, > 1 the strain & increases with stress &
linearly at Hook domain ¢ << 1. For values of 7, in the (1, 10) interval the € vs o
dependence has a monotonically increasing shape with its minimum at point ¢ = 0. At 7,
= 10 a plateau appears, which for 7, > 10 is transformed into a maximum and a minimum
corresponding to the stresses 6_ and o, respectively. The temperature 7 at 7, <2

increases with stress ¢ from the temperature 7, at o = 0 to the horizontal asymptote 7 =
2, and at 7, > 2 control parameter decreases from the maximum value 7, at ¢ = 0 to the
same asymptote 7 = 2. Obviously, this decrease is caused by the negative feedback of the
stress ¢ and the strain € on the temperature 7 in Eq. (18) that is the reflection of Le
Chatelier principle for examined problem. On the other hand, the positive feedback of
the stress ¢ and the temperature 7 on the strain € in Eq. (17) is the reason for melting that
leads to the growth of € due to solid phase instability. However, in accordance with
Eq.(18), the latter results in decrease of 7 as a consequence of self-organization process.

The pointed out positive feedback of o and 7 on & implies that the transition of
lubricant from solid to fluid state is induced both by heating and under influence of stress
generated by solid surfaces at friction. This agrees with examination of solid state
instability within the framework of shear and dynamic disorder-driven melting
representation in absence of thermal fluctuations [7].

According to Eq. (13) the negative feedback in Eq. (18) is always realized in course
of relaxation process to the stationary state during that € <0. As is shown in [9] this
condition is satisfied in adiabatic case (20). The pointed out feedback may be
conditioned also by the mechanic-and-caloric effect provided that dc,, /0T < 0.

The insertion of Eq. (23) into Eq. (16) gives the Landau-Khalatnikov-type equation

1,6 =—-0V /0o, (26)
where the synergetic potential reads:
V= %(1 —g)o’ + g(l —T?j 1n(1 + 02) (27)

" The decrease domain of &(c) function has no physical meaning.
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At steady state the condition 6 =0 is realized and potential (27) assumes a minimum. If
the temperature 7, is smaller than the critical value

T.=1+g™", g=G/Gy<1, Gy=n,/t,, (28)
this minimum corresponds to the stress ¢ = 0, so that the melting can not take place and
the solid state is realized. At the opposite case T, > T, the stationary shear stress has the

non-zero value
1/2
S0 :(gTe_(g"‘l)j (29)
1-g

increasing with 7, growth according to the root law. This causes the melting of film and
its transition into fluid state. In accordance with Eqs. (23), (24) the corresponding
stationary values of melting strain and temperature are as follows:

gy =(0,/G)oy, Ty=1+g". (30)
It is interesting that, on the one hand, the melting temperature 7}, coincides with critical
value (28) and, on the other hand, its value differs from the temperature 7,. The latter
circumstance takes place due to that at steady state the first equation (30) is realized
instead of connection g, = ¢, /0 . Since T, is the minimum value of temperature at which

a solid-liquid transition begins, the above means that the negative feedback of the elastic

stress ¢ and the strain € on the temperature 7T (see third term on the right-hand side of

Eq.(18)) reduces the film's temperature so much that only in the limit does it ensure the

self-organization process. At steady state the melting value of shear viscosity coefficient
is

N =Mo&- (€28

There are two opposite situation depending on parameter g =G /G, value. At the

case g >> 1, that is realized for small value of the viscosity coefficient 1y, Eqs. (28)-(30)
take the form:

o, =(1-7,)"2, T,=T. =1. (32)
Such situation corresponds to the limit of strongly viscous liquid. At the opposite case
2<<1 (large viscosity coefficient 1g) we have instead of Eq. (32) the solid (fragile) limit

oo =(eT,-1)'"?, T,=T.=g "' =n,/1,G. (33)

The Maxwell equation (6) assumes the use of the idealized Genki model. For the
dependence o(g) of the stress on the strain this model is represented by the Hooke
expression 6=Ge at ¢ < g, and the constant ¢,, =G¢,, at € > ¢, (o, &, are the maximal
stress and strain, ¢ > o, leads to viscous flow with the deformation rate
é:(c—cm)/n). Actually, the dependence o(g) curve has two regions: first one,
Hookean, has the large slope fixed by the shear modulus G, and it is followed by the
more gently sloping section of the plastic deformation whose tilt is defined by the
hardening factor ® < G. Obviously the above picture means that the shear modulus,
introduced (in terms of the relaxation time 1) in Eq. (6), depends on the stress value. We
use the simplest approximation

G(c)=0+ G-0

1+6/(5p’ (34
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which describes the above represented transition of the elastic deformation mode to the
plastic one. It takes place at characteristic value of the stress o, which does not exceed
the value o, (in other case the plastic mode is not manifested). As a result, the relaxation
time T, obtains the dependence on the stress value:

1 =L{1+—9]_1 J (35)
5(0) T, l+o/c,
where the relaxation time is introduced for the plastic flow mode (cf. Eq. (5))
T, =NMs/0, (36)
and the quantity
0=0/G<1 37

is the parameter describing the ratio of the tilts for the deformation curve on the plastic
and the Hookean domains. Note, that the expression type of Eq. (35) was offered, for the
first time, by Haken [8] for the description of the rigid mode of the laser radiation. We
used it [9] for the description of the first-order phase transition kinetics, however Eq.(35)
had contained the square of the ratio 6/c, (so the V' vs 6 dependence had the even form
in [9]). At description of the structural phase transitions of a liquid the third order
invariants, breaking the specified parity, is present [10]. Therefore in approximation (35)
we used the linear term o/c,, instead of the square one (c/cp)2. It is visible, that the
following below dependence (38) is not already even.

Within the adiabatic approximation (20) the system of the Lorenz equations (16)-
(18), where instead of the 7, it is necessary to use dependence t4(c), is reduced as well as
above, to the Landau-Khalatnikov equation (26) with 7, instead of 1,. However in the

synergetic potential (27) the factor g =G/ G, is replaced by gg = G*/ Gy® <1, that is
formally supposed to be no dependent on o, and the odd term appears proportional to

07 —1:
V:%(l—gg)cz +g®[1—T—;jln(l+62)+ a2(o” —1{%—111 ] (38)

Here the constant a=0c,/c, is introduced. At small value of temperature 7,

(&)
1+—]
o

dependence (38) has a monotonically increasing shape with its minimum at point ¢ = 0
corresponding to steady state of a solid. As it is seen from Fig. 1 at value

10 =1+ (gg' ~1)ayp/3 ctg(26) + 3} (39)
3
tgd=tg"3(p/2), (§|<n/4) tgp=2 (%} (< =/2).
q
:s_i :i_ﬁ_}_t
p 3 2 q 33 3 b
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a plateau appears, which for 7, > TLO is transformed into a minimum meeting the stress

6y #0 and a maximum c™ that separates minima corresponding to the values ¢ =0

and o = o, . With further growth of the temperature 7, the "ordered" phase minimum,

Vﬂ

Fig. 1. The dependence of the synergetic potential on the elastic stress at various
temperatures: (1) 7, < TC0 ;T = TCO; 3) TC0 <T,<T.; 4 T,=>T,

corresponding to a fluid state o =0, grows deeper, and the height of the interphase

barrier decreases, vanishing at the critical value T, =1+ g_1 (28). The steady-state
values of the stress in a fluid state have the form (see fig 1 and 2):
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Gy =2® cos(gj - l, (40)
3 3
m ¢ 2m) vy
o’ =2wcos| ——— |——; (41)
3 3 3
mE(—\y/3)”2, cosp=-0/2°,
2 3
Y 2y"  yg
=¢——, O=—¢——+¢,
V=673 73 g
a0 -ge) _1+gell-T,)
Y > )
l1-g¢ l1-gg
0‘[971+g®(1_Te)]
&= " :
—&o

At T, >T, the dependence V(o) has the same character as in the absence of the modulus
defect (see the curve 4 in fig. 1).

Fig. 2. The dependence of the steady-state values of the stress on the temperature 7, at

g0 =0.2; 0 =0.4; a = 0.5 (the solid curve corresponds to the steady state value o,

the dashed curve meets the unstable one ™)

The specified peculiarities corresponds to the positive stress values . On the
negative half-axis at 7, > 7, with the increase of |o| a very weak minimum of the V' vs ¢

dependence is observed, which is followed by the infinite increase of the potential V" at
6 =-0,, . Thus, the negative values of the elastic fields o, € are not realized practically.

The characteristic circumstance of our scheme is that energy barrier inherent in the
synergetic first-order transition is displayed only at presence of the deformational defect
of the modulus. Since latter takes place always, it follows that a studied solid-liquid
transition represents synergetic first-order transition. The examined situation is much
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more complex than usual phase transitions. Really, in the latter case the steady-state
value of the system's temperature 7 is reduced to the value 7, fixed by thermostat. In our
case T is reduced to the critical value 7, for the synergetic second-order transition, that
has place in the absence of the modulus defect (see section 3). When we take into

account the modulus defect the temperature

2
So

T,=T,+(2-T,) - (42)
I+o;

is realized whose value is defined by a minimum position of the dependence (38).
According to Egs. (40), (42) the quantity 7, smoothly decreases from the value

T, =T’ +(z_rc°)i°_5£ (43)

1+(08)2 ’
1 [72 1+g@(1—Tc°)]m

3172 T_ 1- g6

3

at T, = TCO tothe T, =1+ g(f)l at T, — o . Referring to fig. 3, the stationary temperature
T, shows a linear increase from 0 to 7, with 7, being in the same

7,
14 —

10

Fig. 3. The dependence of the steady-state value of the system temperature 7, on the
temperature 7, (2o = 0.2; 6 =0.4; a.=0.5)

interval and, after the jump down at T, =T,, magnitude 7, smoothly decays. If the
temperature 7, then decreases the stationary temperature 7 grows. When the point Tc0

(39) is reached T, undergoes the jump from 7, (43) up to TCO. For T, <TC0 again
stationary temperature 7, does not differ from 7.
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Since the stationary values of stress 6, > 0 are realized only at 7, > 1+ gél, ge <1

the range of values TC0 >2 is important for consideration. In this interval the maximum
system's temperature (43) is lower than the minimum temperature of friction surfaces
(39), and as it is visible from Fig. 3, at T, > TC0 the stationary temperature 7, of the film
is always lower than value T..

The above analysis is based on the assumption that a lubricant melting process is
caused by the self-organization of the shear components of the stress and the strain
elastic fields, on the one hand, and the lubricant temperature, on the other hand. Thus, the
stress o acts as the order parameter, the conjugate field is reduced to the elastic strain g,
and the temperature 7 is the control parameter. The initial reason for self-organization is
the positive feedback of 7 and o on € (see Eq. (17)). According to Egs. (8), (9) it is
caused by the temperature dependence of the shear viscosity leading to its divergence.
Accounting for the deformational defect of the shear modulus we obtain the expressions
for temperatures corresponding to absolute instability of overcooled liquid TC0 (39) and
stability limit of the solid state 7, (28). The real thermodynamic melting temperature is in
the (TCO, T.)interval and can be found from the equality condition of potentials of solid

and liquid phases V(0) = V(op). It is seen from Eq. (28) that systems predisposed to

melting have large shear modulus G and small characteristic value of shear viscosity ny.
The kinetics of a considered transition is determined by the Landau-Khalatnikov

equation (26), where 1, is replaced by t, =7, /® and the synergetic potential has the

form (38) inherent in the first-order transition. In supercooled liquid with 1, =oo the
freezing of system can takes place (G — 0) even in the non-stationary state 0V /dc # 0.
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[TnaBneHHs1 yIbTPATOHKOT IUTIBKM MAaCTHIA B POLIEC] TEPTS MiXK aTOMHO TIOCKUMU
MOBEPXHAMH MOJAI0Th SK PE3yJabTaT [il MPY)KHOTO TMOJss 3CYBHOI KOMIOHEHTH
HampyXeHb, IO CIOHTAHHO 3’SBISIOTHCA B pPa3i 30BHINIHBOTO HAAKPUTHIHOTO
HarpiBaHHsA. KiHETHKY mepexoy MiX TBEPAUM Ta PiAKHUM CTaHAMH OMHCYIOTH PiBHSIHHS
B’SI3KOTIPYXKHOTO cepenoBumia Ty MakcBemia i dotirra—KenbBiHa Ta penakcariine
PIBHSHHS JUIA TEeMIlepatypu. 3’sICOBaHO, MO IIi PIiBHSAHHA (GOPMaAIBHO 30iraroThCs 3
CHHEpPreTHYHOI cucTeMoro JIopeHia, e HampyXKeHHs BIiAIrpaloTh polib Iapamerpa
TIOPSJIKY, CIIPsDKEHE T0JIe 3BOAMTHCS JI0 MPYXKHOI 3CYBHOI nedopMallii i Temmeparypa €
MIPOBITHUM TTapaMeTpoM. Y paMKax aaiadaTHYHOTO HAOJIMKCHHS 3HAWICHO CTallioHapHI
3HAUEHHS IMX BENMWYUH. 3 YpaxyBaHHSAM JeGopMariiiHoro neexTy MOAYNS 3CYBY
JIOBEJICHO, IO TUTABJICHHS MacTHJIA BimOYBAEThCS 3a MEXaHI3MOM TEPEXOJy IEepIIoro
pony. KpurmuHa Ttemmeparypa TOBEPXOHb TEpPTS MiABUIIYETHCS 31 30iTBIICHHAM
XapaKTepHOTO 3HAYCHHS 3CYBHOI B’S3KOCTI 1 3HMXKYETHCS 3i 30iMbIIEHHSIM 3HAYCHHS
MOJYJIS 3CYBY 3a JiHIHHAM 3aKOHOM.

Kniouosi crosa: teprsi, npyxHs 3cyBHa nedopmarisi, cucrema JlopeHia, MOLyib
3CYBY, B’SI3KICTb.
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